20 research outputs found

    Long-Range Ordered Carbon Clusters: A Crystalline Material with Amorphous Building Blocks

    Get PDF
    Solid-state materials can be categorized by their structures into crystalline (having periodic translation symmetry), amorphous (no periodic and orientational symmetry), and quasi-crystalline (having orientational but not periodic translation symmetry) phases. Hybridization of crystalline and amorphous structures at the atomic level has not been experimentally observed. We report the discovery of a long-range ordered material constructed from units of amorphous carbon clusters that was synthesized by compressing solvated fullerenes. Using x-ray diffraction, Raman spectroscopy, and quantum molecular dynamics simulation, we observed that, although carbon-60 cages were crushed and became amorphous, the solvent molecules remained intact, playing a crucial role in maintaining the long-range periodicity. Once formed, the high-pressure phase is quenchable back to ambient conditions and is ultra-incompressible, with the ability to indent diamond

    Long-Range Ordered Carbon Clusters: A Crystalline Material with Amorphous Building Blocks

    Get PDF
    Solid-state materials can be categorized by their structures into crystalline (having periodic translation symmetry), amorphous (no periodic and orientational symmetry), and quasi-crystalline (having orientational but not periodic translation symmetry) phases. Hybridization of crystalline and amorphous structures at the atomic level has not been experimentally observed. We report the discovery of a long-range ordered material constructed from units of amorphous carbon clusters that was synthesized by compressing solvated fullerenes. Using x-ray diffraction, Raman spectroscopy, and quantum molecular dynamics simulation, we observed that, although carbon-60 cages were crushed and became amorphous, the solvent molecules remained intact, playing a crucial role in maintaining the long-range periodicity. Once formed, the high-pressure phase is quenchable back to ambient conditions and is ultra-incompressible, with the ability to indent diamond

    lncRNA TINCR knockdown inhibits colon cancer cells via regulation of autophagy

    No full text
    Abstract The present study aimed to evaluate the effects of long noncoding (lnc)RNA TINCR ubiquitin domain containing (TINCR) on the development of colon cancer, and the specific underlying mechanisms. The present study used adjacent healthy and cancer tissues obtained from patients with colon cancer and measured lncRNA TINCR expression using reverse transcription‐quantitative (RT‐q) PCR and in situ hybridization assays. Moreover, associations between lncRNA TINCR and clinicopathology and prognosis were also investigated. In addition, the gene and protein expression levels of lncRNA TINCR, mTOR, LC 3B, P62, and Beclin1 were measured using RT‐qPCR and western blotting assays. Cell proliferation, apoptosis, invasion, and migration were measured using MTT, Edu staining, flow cytometry, TUNEL, Transwell, and wound‐healing assays, and cell ultrastructure and LC 3B activation were measured using transmission electron microscopy and cellular immunofluorescence. Results of the present study demonstrated that lncRNA TINCR expression was significantly upregulated in colon cancer tissues, and the overall survival of the low‐expression group was significantly increased, compared with that of the high‐expression groups. In addition, the results of the present study demonstrated that lncRNA TINCR was associated with clinicopathology in patients with colon cancer. Moreover, following lncRNA TINCR knockdown using transfection with small interfering RNA‐TINCR, results of the present study demonstrated that cell proliferation was significantly reduced, while cell apoptosis was significantly increased. In addition, cell invasion and migration were significantly reduced, and autophagy was increased in HT‐29 and SW620 cell lines. However, following treatment with an mTOR agonist (an autophagy inhibitor), biological activities were significantly increased in HT‐29 and SW‐620 cell lines. Collectively, these results demonstrated that lncRNA TINCR may induce colon cancer development through the regulation of autophagy

    Ambient PM2.5 and its components associated with 10-year atherosclerotic cardiovascular disease risk in Chinese adults

    No full text
    Background: Exposure to particulate matter with aerodynamic diameters less than 2.5 ”m (PM2.5) may increase the risk of 10-year atherosclerotic cardiovascular disease (ASCVD) risk. While PM2.5 is comprised of various components, the evidence on the correlation of its components with 10-year ASCVD risk and which component contributes most remains limited. Methods: Data were derived from the baseline assessments of China Multi-Ethnic Cohort (CMEC). In total, 69,722 individuals aged 35–74 years were included into this study. The annual average concentration of PM2.5 and its components (black carbon, ammonium, nitrate, sulfate, organic matter, soil particles, and sea salt) were estimated by satellite remote sensing and chemical transport models. The ASCVD risk of individuals was calculated by the equations from the China-PAR Project (prediction for ASCVD risk in China). The relationship between single exposure to PM2.5 and its components and predicted 10-year ASCVD risk was assessed using the logistic regression model. The effect of joint exposure was estimated, and the most significant contributor was identified using the weighted quantile sum approach. Results: Totally 69,722 participants were included, of which 95.8 % and 4.2 % had low and high 10-year ASCVD risk, respectively. Per standard deviation increases in the 3-year average concentration of PM2.5 mass (odds ratio [OR] 1.23, 95 % confidence interval [CI]: 1.12–1.35), black carbon (1.21, 1.11–1.33), ammonium (1.21, 1.10–1.32), nitrate (1.25, 1.14–1.38), organic matter (1.29, 1.18–1.42), sulfate (1.17, 1.07–1.28), and soil particles (1.15, 1.04–1.26) were related to high 10-year ASCVD risk. The overall effect (1.19, 1.11–1.28) of the PM2.5 components was positively associated with 10-year ASCVD risk, and organic matter had the most contribution to this relationship. Female participants were more significantly impacted by PM2.5, black carbon, ammonium, nitrate, organic matter, sulfate, and soil particles compared to others. Conclusion: Long-term exposure to PM2.5 mass, black carbon, ammonium, nitrate, organic matter, sulfate, and soil particles were positively associated with high 10-year ASCVD risk, while sea salt exhibited a protective effect. Moreover, the organic matter might take primary responsibility for the relationship between PM2.5 and 10-year ASCVD risk. Females were more susceptible to the adverse effect
    corecore